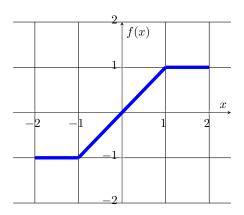
Problem 1. (PCA) 4 points

Consider the following **standardized** (i.e., centered and scaled by standard deviation) dataset $X \in \mathbb{R}^{3 \times 2}$ with 3 data entries and two features, where each data point is labeled as Class A or B:


$$X = \begin{bmatrix} x_1^1 & x_2^1 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix} \qquad Y = \begin{bmatrix} y^1 \\ y^2 \\ y^3 \end{bmatrix} = \begin{bmatrix} A \\ B \\ A \end{bmatrix}$$

- 1. (1 point) What is the dimension of the covariance matrix for the dataset X?
- 2. (1 point) The eigenvalues of $X^{\top}X$ are $\lambda_1 = 4, \lambda_2 = 2$ and the corresponding eigenvectors are $v_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}, v_2 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}$. Project the data onto the first principal component.
- 3. (2 points) Classify the new data point $x^4 = [-1, 0]$ based on its nearest neighbor with the **projected features**. Note that x^4 is already standardized.

Problem 2. (Neural networks) 4 points

Consider a neural network $f:[-2,2]\to\mathbb{R}$, with $f(x)=W^{[1]T}$ $g\left(W^{[0]T}x+b^{[0]}\right)+b^{[1]}$ with a single hidden layer and activation function $g(x):=\max(0,x)$, where $W^{[0]}=\begin{bmatrix}1&1\end{bmatrix}$, $b^{[0]}=\begin{bmatrix}1\\-1\end{bmatrix}$.

- 1. (1 point) Write the expression for $g(W^{[0]T}x + b^{[0]}) \in \mathbb{R}^2$ as a function of $x \in \mathbb{R}$.
- 2. (3 points) Determine $W^{[1]} \in \mathbb{R}^{2 \times 1}$ and $b^{[1]} \in \mathbb{R}$ such that f has the graph below.

Problem 3. (K-means clustering) 2 points

You are given a data set $X \in \mathbb{R}^{10 \times 2}$ for which you have used k-means clustering with k = 2 to cluster your data. The center of each cluster is $\mu^1 = (3,2)$ and $\mu^2 = (7,8)$. Consider a sample $x \in \mathbb{R}^2$ with a missing value, namely x = (?, 4).

- 1. (1 point) To which cluster center this point is closest?
- 2. (1 point) Determine the missing entry based on the k-means clusters.